Close
Exercise : Chapter 18 Trigonometric Identities Exercise MCQ Questions and Answers

1. If A is an acute angle and sin A = \(3 \over 5\) find all other trigonometric ratios of angle A (using trigonometric identities).

Solution :
sin A = \(3 \over 5\)

In ∆ABC, ∠B = 90°

AC = 5 and BC = 3


∴ AB = \( \sqrt{AC^2 - BC^2} \) = \( \sqrt{5^2 - 3^2} \)

= \(\sqrt{25 - 9}\) = \(\sqrt{16}\) = 4

Now, cos θ = \(AB \over AC\) = \(4 \over 5\)

tanθ = \(BC \over AB\) = \(3 \over 4\)

cotθ = \(1 \over tan θ\) = \(4 \over 3\)

sec θ = \(1 \over cos θ\) = \(5 \over 4\)

cosec θ = \(1 \over sin θ\) = \(5 \over 3\)

View Answer Workspace Report Discuss

2. If A is an acute angle and sec A = \(17 \over 8\), find all other trigonometric ratios of angle A (using trigonometric identities).

Solution :
sec A = \(17 \over 8\) (A is an acute angle)

In right ∆ABC

sec A = \(AC \over AB\) = \(17 \over 8\)

AC = 17, AB = 8



BC = \( \sqrt{AC^2 - AB^2} \) = \( \sqrt{17^2 - 8^2} \)

= \(\sqrt{289 - 64}\) = \(\sqrt{225}\) = 15

Now, sin A = \(BC \over AC\) = \(15 \over 17\)

cos A = \(1 \over sec A \) = \(8 \over 17\)

tan A = \(BC \over AB\) = \( 15 \over 8 \)

cot A = \(1 \over tan A \) = \(8 \over 15\)

cosec A = \(1 \over sin A \) = \(17 \over 15\)

View Answer Workspace Report Discuss

3. If 12 cosec θ = 13, find the value of (2 sin θ – 3 cos θ)/ (4 sin θ – 9 cos θ)

Solution :

Given,

12 cosec θ = 13

⇒ cosec θ = 13/12

In right ∆ ABC,

∠A = θ

So, cosec θ = AC/BC = 13/12

AC = 13 and BC = 12

By Pythagoras theorem,

AB = √(AC2 – BC2)

= √[(13)2 – (12)2]

= √(169 – 144)

= √25

= 5

Now,

sin θ = BC/AC = 12/13

cos θ = AB/AC = 5/13

Hence,

\( {2sin θ - 3cos θ} \over {4sin θ - 9cos θ} \) = \( {2 x { 12 \over 13 } - 3 x { 5 \over 13 } } \over {4 x { 12 \over 13 } - 9 x { 5 \over 13 } } \)

= \( { 24 \over 13 } - { 15 \over 13 } \over { 48 \over 13 } - { 45 \over 13 } \) = \( { 9 \over 13 } \over { 3 \over 13 } \)

= \( { 9 \over 13 } x { 13 \over 3 } \) = 3

View Answer Workspace Report Discuss

4. Without using trigonometric tables, evaluate the following (4 to 7) :

(i) \(cos^2 26° + cos 64° sin 26° + { tan 36° \over cot 54° } \)
(ii) \( { sec 17° \over cosec 73° } + {tan68° \over cot 22° } + cos^2 44° + cos^2 46° \)

Solution :
Given that
(i) \(cos^2 26° + cos 64° sin 26° + { tan 36° \over cot 54° } \)

= \(cos^2 26° + cos (90° - 26°) sin 26° + { tan 36° \over cot (90° - 36°) } \)

= \(cos^2 26° + sin^2 26° + { tan 36° \over tan 36° } \)

= 1 + 1 = 2

[∵ cos(90° - θ) = sin θ, cot (90° - θ) = tan θ and \( {sin^2} θ + {cos^2} θ = 1 \) ]

(ii) \( { sec 17° \over cosec 73° } + {tan68° \over cot 22° } + cos^2 44° + cos^2 46° \)

= \( { sec (90° - 73°) \over cosec 73° } + {tan (90° - 22°) \over cot 22° } + cos^2 (90° - 46°) + cos^2 46° \)

= \( { cosec 73° \over cosec 73° } + { cot 22° \over cot 22° } + sin^2 46° + cos^2 46° \)

= 1 + 1 + 1 = 3

View Answer Workspace Report Discuss

5. Without using trigonometric tables, evaluate the following (4 to 7)
(i) \( {sin 65° \over cos 25°} + { cos 32° \over sin 58° } – sin 28° x sec 62° + cosec^2 30° \)
(ii) \({sec29° \over cosec61°} + 2 cot 8° cot 17° cot 45° cot 73° cot 82° – 3(sin^2 38° + sin^2 52°). \)

Solution :
given that (i) \( {sin 65° \over cos 25°} + { cos 32° \over sin 58° } – sin 28° x sec 62° + cosec² 30° (2015) \)

= \( {sin 65° \over cos (90° - 65°)} + { cos 32° \over sin (90°-32°) } – sin 28° x sec (90° - 28°) + (2)^2 \)

= \( {sin 65° \over sin 65°} + { cos 32° \over cos 32° } – sin 28° x cosec 28° + (2)^2 \)

= \( 1 + 1 – 1 + 4 \)

= 6 - 1 = 5

(ii) \({sec29° \over cosec61°} + 2 cot 8° cot 17° cot 45° cot 73° cot 82° – 3(sin^2 38° + sin^2 52°). \)

= \({sec29° \over cosec(90° - 29°)} + 2 cot 8° cot 17° cot 45° cot (90° - 17°) cot (90°-8°) – 3(sin^2 38° + sin^2 (90° - 38°) \)

= \({sec29° \over cosec(90° - 29°)} + 2 cot 8° cot 17° cot 45° cot (90° - 17°) cot (90°-8°) – 3(sin^2 38° + sin^2 (90° - 38°) \)

= \({sec29° \over cosec(90° - 29°)} + 2 cot 8° cot 17° cot 45° cot (90° - 17°) cot (90°-8°) – 3(sin^2 38° + sin^2 (90° - 38°) \)

= \({sec29° \over sec29°} + 2 cot 8° cot 17° cot 45° tan 17° tan 8° – 3(sin^2 38° + cos^2 38°) \)

= \( 1 + 2 x cot 8° x cot 17° x cot 45° x {1 \over cot 8°} x {1 \over cot 17°} – {3 x 1} \)

= \( 1 + 2 x 1 x 1 x 1 – 3 \)

= \( 3 – 3 \) = \( 0 \)

View Answer Workspace Report Discuss

6. Without using trigonometric tables, evaluate the following (4 to 7)
(i) \( {sin35° cos55° + cos35° sin55°} \over { cosec^2 10° − tan^2 80°} \)
(ii) \(sin^2 34° + sin^2 56° + 2tan18° tan72° − cot^2 30° \)

Solution :
Given that

(i) \( {sin35° cos55° + cos35° sin55°} \over { cosec^2 10° − tan^2 80°} \)

= \( {sin35° cos(90° - 35)° + cos35° sin(90° - 35°)} \over { cosec^2 10° − tan^2 (90° - 10°)} \)

= \( {sin35° sin35° + cos35° cos35°} \over { cosec^2 10° − cot^2 10} \)

= \( {sin^2 35° + cos^2 35°} \over { cosec^2 10° − cot^2 10} \)

= \( 1 \over 1 \) = 1

[∵ \( {sin^2} θ + {cos^2} θ = 1 \) and \( {cosec^2} θ - {cot^2} θ = 1 \) ]

(ii) \(sin^2 34° + sin^2 56° + 2tan18° tan72° − cot^2 30° \)

= \(sin^2 34° + sin^2 (90° - 34°) + 2tan18° tan(90° - 18°) − cot^2 30° \)

= \(sin^2 34° + cos^2 34° + 2 tan18° cot18° − cot^2 30° \)

= \(1 + 2 x 1 − (\sqrt 3)^2 \)

= \(1 + 2 − 3 \) = \( 3 − 3 \) = \( 0 \)

View Answer Workspace Report Discuss

7. Without using trigonometric tables, evaluate the following (4 to 7)
(i) \( ({ tan25° \over cosec65° })^2 + ({cot25° \over sec65° })^2 + 2 tan18° tan45° tan72° \)
(ii) \( {(cos^2 25° + cos^2 65°)} + cosecθ \ sec(90°−θ) − cotθ \ tan(90°−θ) \)

Solution :
(i) \( ({ tan25° \over cosec65° })^2 + ({cot25° \over sec65° })^2 + 2 tan18° tan45° tan72° \)

= \( ({ tan25° \over cosec(90° -25°) })^2 + ({cot25° \over sec(90°-25°) })^2 + 2 tan18° tan45° tan(90° - 18°) \)

= \( ({ tan25° \over sec25° })^2 + ({cot25° \over cosec25° })^2 + 2 tan18° tan45° cot18° \)

= \( ({ {sin25° x cos25°} \over {cos25° x 1} })^2 + ({ {cos25° x sin25°} \over {sin25° x 1} })^2 + 2 x 1 x 1 \)

= \( sin^2 25° + cos^2 25° + 2 \) = \( 1 + 2 \) = \( 3 \)

[∵ \( {sin^2} θ + {cos^2} θ = 1 \) and \( {tan} θ \ {cot} θ = 1 \) ]

(ii) \( {(cos^2 25° + cos^2 65°)} + cosecθ \ sec(90°−θ) − cotθ \ tan(90°−θ) \)

= \( {[ cos^2 25° + cos^2 (90° - 25°) ]} + cosecθ \ cosecθ − cotθ \ cotθ \)

= \( {( cos^2 25° + sin^2 25° )} + cosec^2 θ − cot^2 θ \)

= \( 1 + 1 \) = \( 2 \)

[∵ \( {sin^2} θ + {cos^2} θ = 1 \) and \( cosec^2 θ - cot^2 θ = 1 \) ]

View Answer Workspace Report Discuss

8. Prove that following (8 to 26) identities, where the angles involved are acute angles for which the trigonometric ratios as defined:
(i) (sec A + tan A) (1 – sin A) = cos A
(ii) \( {(1 + tan^2 A) (1 – sin A) (1 + sin A)} \) = 1

Solution :
(i) (sec A + tan A) (1 – sin A) = cos A

L.H.S = \( ({1 \over cos A} + { sin A \over cos A}) {( 1 - sin A )} \)

= \( {(1 + sin A) \times (1 - sin A)} \over cos A \)

= \( {cos^2 A} \over cos A \) = \( cos A \) = \( R.H.S \)
[∵ \( 1 - {sin^2} θ = cos^2 θ \) ]
(ii) \( {(1 + tan^2 A) (1 – sin A) (1 + sin A)} \) = 1

L.H.S. = \( {(1 + tan^2 A) (1 – sin A) (1 + sin A)} \)

= \( (1 + {sin^2 A \over cos^2 A}) (1 – sin^2 A) \)

= \( {{cos^2 A + sin^2 A} \over cos^2 A} \times cos^2 A \)

= \( {1 \over cos^2 A} \times cos^2 A \) = \( 1 \) = \( R.H.S \)
[∵ \( 1 - {sin^2} A = cos^2 A \) and \( sin^2 A + cos^2 A = 1 \) ]

View Answer Workspace Report Discuss

9. Prove that following (8 to 26) identities, where the angles involved are acute angles for which the trigonometric ratios as defined:
(i) tan A + cot A = sec A cosec A
(ii) (1 – cos A)(1 + sec A) = tan A sin A.

Solution :
(i) tan A + cot A = sec A cosec A

L.H.S = tan A + cot A

= \( {sinA \over cosA} + {cosA \over sinA} \)

= \( {sin^2 A + cos^2 A} \over {sinA \ cosA} \)

= \( 1 \over {sinA \ cosA} \) = \( cosecA \ secA \) = \( secA \ cosecA \) = \( R.H.S. \)
[∵ \( sin^2 A + cos^2 A = 1 \) ]
(ii) (1 – cos A)(1 + sec A) = tan A sin A

L.H.S. = \( (1 – cos A)(1 + sec A) \)

= \( (1 – cos A)(1 + {1 \over cos A}) \)

= \( (1 – cos A){(cosA + 1) \over cos A} \)

= \( {(1 – cos A) (1 + cosA)} \over cos A \)

= \( {1 – cos^2 A} \over cos A \)

= \( sin^2 A \over cos A \) = \( sin A \times {sinA \over cos A} \)

= \( sinA tanA \) = \( tanA sinA \) = \( R.H.S \)
[∵ \( 1 – cos^2 A = sin^2 A \) and \( tanA = {sinA \over cosA} \) ]

View Answer Workspace Report Discuss

10. (i) \( cot^2 A - cos^2 A = cot^2 A cos^2 A \)

(ii) \( 1 + { tan^2 A \over {1+secA} } = sec A \)

(iii) \( {{1+secA} \over secA} = {sin^2 A \over {1-cosA}} \)

(iv) \( {sinA \over (1-cosA)} = cosec A + cotA \)

Solution :
(i) \( cot^2 A - cos^2 A = cot^2 A cos^2 A \)
LHS = \( cot^2 A - cos^2 A \)

= \( {cos^2 A \over sin^2A} - cos^2 A \)

= \( {cos^2 A {(1-sin^2A)}}\over sin^2A \)

= \( {cos^2 A {cos^2 A\over sin^2A}} \)

= \( cos^2 A cot^2A = RHS \)

(ii) \( 1 + { tan^2 A \over {1+secA} } = sec A \)

LHS = \( 1 + { tan^2 A \over {1+secA} } \)

= \( 1 + { {sec^2 A -1} \over {1+secA} } \)

= \( 1 + { {{(secA-1)}{(secA+1)}} \over {1+secA} } \)

= \( 1 + { {{(secA-1)}} } \)

= \(secA = RHS\)

(iii) \( {{1+secA} \over secA} = {sin^2 A \over {1-cosA}} \)

LHS = \( {{1+secA} \over secA} \)

= \( {{1+{1 \over cosA}} \over {1 \over cosA}} \)

= \( {{1+{1 \over cosA}} \over {1 \over cosA}} \)

= \( {({1+{1 \over cosA})} \times {cosA}} \)

= \( {{cosA+1} \over cosA} \times {cosA} \)

= \( {cosA +1} \)

= \( {(1+cosA)} \times {{(1-cosA)}\over{(1-cosA)}} \)

= \( {{(1-cos^2A)}\over{(1-cosA)}} \)

= \( {{sin^2A}\over{1-cosA}} \) = RHS

(iv) \( {sinA \over (1-cosA)} = cosec A + cotA \)

LHS = \( sinA \over (1-cosA) \)

= \( {sinA \over (1-cosA)} \times {(1+cosA)\over(1+cosA)} \)

= \( {{sinA + sinA cosA} \over (1-cos^2A)} \)

= \( {{sinA + sinA cosA} \over sin^2A} \)

= \( {sinA \over sin^2A} + {{sinAcosA} \over \sin^2A } \)

= \( {1 \over sinA} + {{cosA} \over sinA } \)

= \( {cosecA} + {cotA } = RHS \)

View Answer Workspace Report Discuss

11. (i) \( {sinA \over {1+cosA}} = {{1-cosA} \over sinA} \)

(ii) \( {{1-tan^2 A} \over {cot^2 A -1}} = tan^2A \)

(iii) \( {sinA \over {1+cosA}} = cosecA-cotA \)

Solution :
(i) \( {sinA \over {1+cosA}} = {{1-cosA} \over sinA} \)

LHS = \( {sinA \over {1+cosA}} \)

= \( {sinA \over {1+cosA}} \times {(1-cosA) \over (1-cosA)} \)

= \( {sinA (1-cosA)} \over {(1-cos^2A)} \)

= \( {sinA (1-cosA)} \over {sin^2A} \)

= \( {1-cosA} \over {sinA} \)

(ii) \( {{1-tan^2 A} \over {cot^2 A -1}} = tan^2A \)

LHS = \( {{1-tan^2 A} \over {cot^2 A -1}} \)

= \( {{1-{({sin^2A \over cos^2A})}} \over {{({cos^2A \over sin^2A})} -1}} \)

= \( {{cos^2A - sin^2A} \over cos^2A} \over {{cos^2A - sin^2A} \over sin^2A} \)

= \( {{cos^2A - sin^2A} \over cos^2A} \times { sin^2A \over {cos^2A - sin^2A}} \)

= \( {sin^2A \over cos^2A} = tan^2A = RHS\)


(iii) \( {sinA \over {1+cosA}} = cosecA-cotA \)

LHS = \( {sinA \over {1+cosA}} \)

= \( {sinA \over {1+cosA}} \times {{1-cosA}\over{1-cosA}} \)

= \( {{sinA{(1-cosA)}} \over {1-cos^2A}} \)

= \( {{sinA{(1-cosA)}} \over sin^2A} \)

= \( {{{(1-cosA)}} \over sinA} \)

= \( {1\over sinA} - {cosA \over sinA} \)

= \( {cosecA - cotA} = RHS \)

View Answer Workspace Report Discuss

12. (i) \( {{secA-1} \over {secA+1}} = {{1-cosA} \over {1+cosA}} \)

(ii) \( {tan^2θ \over {(secθ-1)^2}} = {{1+cosθ}\over{1-cosθ}} \)

(iii) \( {(1+tanA)^2} + {(1-tanA)^2} = 2 sec^2 A \)

(iv) \( sec^2A +cosec^2A = sec^2A cosec^2A \)

Solution :
(i) \( {{secA-1} \over {secA+1}} = {{1-cosA} \over {1+cosA}} \)

LHS = \( {{secA-1} \over {secA+1}} \)

= \( {{{1 \over cosA}-1} \over {{1 \over cosA}+1}} \)

= \( {{1-cosA}\over cosA} \over {{1+cosA}\over cosA} \)

= \( {{1-cosA} \over cosA} \times {{1+cosA}\over cosA} \)

= \( {{1-cosA} \over {1+cosA}} = RHS \)

(ii) \( {tan^2θ \over {(secθ-1)^2}} = {{1+cosθ}\over{1-cosθ}} \)

LHS = \( {tan^2θ \over {(secθ-1)^2}} \)

= \( {sec^2θ -1} \over {(secθ-1)^2} \)

= \( {(secθ+1) (secθ-1)} \over {(secθ-1)^2} \)

= \( {secθ+1}\over {secθ-1} \)

= \( {{1 \over cosθ} +1} \over {{1 \over cosθ} -1} \)

= \( {{1+cosθ}\over cosθ} \over {{1-cosθ} \over cosθ} \)

= \( {{1+cosθ}\over cosθ} \times {cosθ \over {1-cosθ}}\) = \( {{1+cosθ}\over {1-cosθ}} =RHS \)


(iii) \( {(1+tanA)^2} + {(1-tanA)^2} = 2 sec^2 A \)

LHS = \( {(1+tanA)^2} + {(1-tanA)^2} \)

= \( 1+tan²A+2tanA+1+tan²A-2tanA \)

= \( 2+2tan²A \)

from formula, \( sen²A-tan²A=1 \) that is \( sec²A=1+tan²A \)

= \( 2(1+tan²A) \)

= \( 2sec²A = RHS \)

(iv) \( sec^2A +cosec^2A = sec^2A cosec^2A \)

LHS = \( sec^2A +cosec^2A \)

= \( {1 \over cos^2A} + {1 \over sin^2A} \)

= \( {sin^2A + cos^2A} \over {cos^2A sin^2A} \)

= \( 1 \over {cos^2A sin^2A} \)

= \( {1 \over {cos^2A}}\times{1 \over {sin^2A}} \)

= \( sec^2A cosec^2A = RHS \)

View Answer Workspace Report Discuss

13. (i) \( {{1+sinA} \over cosA} + {cosA \over {1+sinA}} = 2 secA \)

(ii) \( {tanA \over {secA-1}} + {tanA \over {secA+1}} = 2 cosecA \)

Solution :
(i) \( {{1+sinA} \over cosA} + {cosA \over {1+sinA}} = 2 secA \)

LHS = \( {{1+sinA} \over cosA} + {cosA \over {1+sinA}} \)

= \( {{(1+sinA)^2} + {cos^2A}} \over cosA {(1+sinA)} \)

= \( {{1 + sin^2A + 2sinA + cos^2A} \over cosA {(1+sinA)} } \)

= \( {1+1+2sinA} \over cosA {(1+sinA)} \)

= \( {2+2sinA} \over cosA {(1+sinA)} \)

= \( {2(1+sinA)} \over cosA {(1+sinA)} \)

= \( 2 \over cosA \) = \( 2 secA = RHS \)

(ii) \( {tanA \over {secA-1}} + {tanA \over {secA+1}} = 2 cosecA \)

LHS = \( {tanA \over {secA-1}} + {tanA \over {secA+1}} \)

= \( {{sinA \over cosA} \over {{1 \over cosA} -1}} + {{sinA \over cosA} \over {{1 \over cosA} +1}} \)

= \( {{sinA \over cosA} \over {{1-cosA}\over cosA}} + {{sinA \over cosA} \over {{1+cosA}\over cosA}} \)

= \( {({sinA \over cosA} \times {cosA \over {1-cosA}})} + {({sinA \over cosA} \times {cosA \over {1+cosA}})} \)

= \( {sinA \over {1-cosA}} + {sinA \over {1+cosA}} \)

= \( {{sinA (1+cosA)} + {sinA (1-cosA)} } \over {(1-cosA)(1+cosA)} \)

= \( {{sinA + sinAcosA + sinA - sinAcosA}\over {1-cos^2A}} \)

= \( {2sinA} \over sin^2A \) = \( 2 \over sinA \) = \( 2 cosecA = RHS \)

View Answer Workspace Report Discuss

14. (i) \( {cosecA \over {cosecA-1}} + {cosecA \over {cosecA+1}} = 2sec^2A \)

(ii) \( {cotA-tanA} = {{2cos^2A-1}\over{sinA cosA}} \)

(iii) \( {{cotA-1} \over {2-sec^2A}} = {cotA \over {1+tanA}} \)

Solution :
(i) \( {cosecA \over {cosecA-1}} + {cosecA \over {cosecA+1}} = 2sec^2A \)

LHS = \( {cosecA \over {cosecA-1}} + {cosecA \over {cosecA+1}} \)

= \( {{cosecA (cosecA+1)} + {cosecA (cosecA-1)}} \over {(cosecA-1)(cosecA+1)} \)

= \( {{cosec^2A + cosecA + cosec^2A - cosecA} \over {cosec^2A-1}} \)

= \( {2cosec^2A} \over cot^2A \)

= \( {2 \over sin^2A} \over {cos^2A \over sin^2A} \)

= \( {2 \over sin^2A} \times {sin^2A \over cos^2A} \)

= \( {2 \over cos^2A } = {2 sec^2A} = RHS \)

(ii) \( {cotA-tanA} = {{2cos^2A-1}\over{sinA cosA}} \)

LHS = \( {cosA \over sinA} - {sinA \over cosA} \)

= \( {cos^2A - sin^2A} \over {sinA cosA} \)

= \( {cos^2A - (1-cos^2A)} \over {sinA cosA} \)

= \( {cos^2A -1 + cos^2A} \over {sinA cosA} \)

= \( {{2cos^2A-1} \over {sinA cosA}} = RHS \)

(iii) \( {{cotA-1} \over {2-sec^2A}} = {cotA \over {1+tanA}} \)

LHS = \( {cotA - 1} \over {2 - sec^2A} \)

= \({{cosA \over sinA} - 1} \over {1 + 1 - sec^2A} \)

= \({{cosA - sinA} \over sinA} \over {1 - tan^2A} \)

= \({{cosA - sinA} \over sinA} \over {1 - {sin^2A \over cos^2A}} \)

= \({{cosA - sinA} \over sinA} \over {{cos^2A - sin^2A} \over cos^2A} \)

= \({{cosA - sinA} \over sinA } \times {cos^2A \over {(cosA + sinA)} {(cosA - sinA)}} \)

= \( {cos^2A} \over {sinA (cosA + sinA)} \)

RHS = \( cotA \over {1 - tanA} \)

= \( {(cosA \over sinA)} \over {(1 - sinA) \over cosA} \)

= \( {cosA \over sinA} \over {{cosA - sinA} \over cosA} \)

= \( {cosA \over sinA} \times {cosA \over {cosA - sinA}} \)

= \( {cos^2A} \over {sinA (cosA + sinA)} \)

\( LHS = RHS \)

Hence proved.

View Answer Workspace Report Discuss

15. (i) \( tan^2θ - sin^2θ = tan^2θsin^2θ \)

(ii) \( {cosθ \over {1-tanθ}} - {sin^2θ \over {cosθ-sinθ}} = cosθ+sinθ \)

Solution :
(i) \( tan^2θ - sin^2θ = tan^2θsin^2θ \)

LHS = \( tan^2θ - sin^2θ \)

= \( {sin^2θ \over cos^2θ} - sin^2θ \)

= \( {sin^2θ - sin^2θcos^2θ} \over cos^2θ \)

=\( {sin^2θ{(1-cos^2θ)}} \over cos^2θ \)

= \( {{sin^2θ sin^2θ} \over cos^2θ} \)

= \( {sin^2θ \over cos^2θ} sin^2θ \)

= \( tan^2θsin^2θ = RHS \)

(ii) \( {cosθ \over {1-tanθ}} - {sin^2θ \over {cosθ-sinθ}} = cosθ+sinθ \)

LHS = \( {cosθ \over {1-tanθ}} - {sin^2θ \over {cosθ-sinθ}} \)

= \( {cosθ \over {1-{sinθ \over cosθ}}} - {sin^2θ \over {cosθ-sinθ}} \)

= \( {cosθ \over {{cosθ-sinθ} \over cosθ}} - {sin^2θ \over {cosθ-sinθ}} \)

= \( {cosθ \times {cosθ \over {cosθ-sinθ}}} - {sin^2θ \over {cosθ-sinθ}} \)

= \( {cos^2θ \over {cosθ-sinθ}} - {sin^2θ \over {cosθ-sinθ}} \)

= \( {cos^2θ -sin^2θ } \over { cosθ-sinθ} \)

= \( {(cosθ -sinθ)(cosθ +sinθ)} \over {(cosθ-sinθ)} \)

= \( {(cosθ +sinθ)} = RHS \)

View Answer Workspace Report Discuss

16. (i) \( cosec^4θ-cosec^2θ = cot^4θ+cot^2θ \)

(ii) \( 2sec^2θ-sec^4θ-2cosec^2θ+cosec^4θ = cot^4θ - tan^4θ \)

Solution :
(i) \( cosec^4θ-cosec^2θ = cot^4θ+cot^2θ \)

LHS = \( cosec^4θ-cosec^2θ \)

= \( {cosec^2θ(cosec^2θ-1)} \)

= \( cosec^2θ cot^2θ \)

= \( {(1+cot^2θ) cot^2θ} \)

= \( {cot^2θ+} \)

= \( {cot^4θ + cot^2θ} = RHS \)

(ii) \( 2sec^2θ-sec^4θ-2cosec^2θ+cosec^4θ = cot^4θ - tan^4θ \)

LHS = \( 2sec^2θ−sec^4θ−2cosec^2θ+cosec^4θ \)

= \( {(cosec^4θ−2cosec^2θ)}−{(sec^4θ−2sec^2θ)} \)

= \( {(cosec^4θ−2cosec^2θ+1)}−{(sec^4θ−2sec^2θ+1)} \)

= \( {(cosec^2θ−1)^2}−{(sec^2θ−1)^2} \)

= \( {cot^4θ−tan^4θ} \)

= \( RHS \)

View Answer Workspace Report Discuss

17. (i) \( {{1+cosθ-sin^2θ} \over {sinθ{(1+cosθ)}}} = cotθ \)

(ii) \( {{tan^3θ-1}\over{tanθ-1}} = sec^2θ+tanθ \)

Solution :
(i) \( {{1+cosθ-sin^2θ} \over {sinθ{(1+cosθ)}}} = cotθ \)

LHS = \( {{1+cosθ-sin^2θ} \over {sinθ{(1+cosθ)}}} \)

= \( {{1+cosθ-{1+cos^2θ}} \over {sinθ{(1+cosθ)}}} \)

= \( {{1+cosθ-1+cos^2θ}} \over {sinθ{(1+cosθ)}} \)

= \( {cosθ(1+cosθ)} \over {sinθ{(1+cosθ)}} \)

= \( {cosθ \over sinθ} = cotθ = RHS \)

(ii) \( {{tan^3θ-1}\over{tanθ-1}} = sec^2θ+tanθ \)

LHS = \( {{tan^3θ-1}\over{tanθ-1}} \)

= \( {{(tanθ-1)}{tan^2θ + tanθ +1}} \over {tanθ-1} \)

= \( {tan^2θ + tanθ +1} \)

= \( {(1+ tan^2θ)} + tanθ \)

= \( sec^2θ + tanθ = RHS \)

View Answer Workspace Report Discuss

18. (i) \( {{1+cosecA} \over cosecA} = {cos^2A \over {1-sinA}} \)

(ii) \( {\sqrt {{1-cosA}\over{1+cosA}}} = {sinA \over {1+cosA}} \)

Solution :
(i) \( {{1+cosecA} \over cosecA} = {cos^2A \over {1-sinA}} \)

LHS = \( {{1+cosecA} \over cosecA} \)

= \( {1 \over cosecA} + {cosecA \over cosecA} \)

= \( sinA+1 \)

= \( {sinA+1} \times {{(1-sinA )} \over {(1-sinA)}} \)

= \( {1- sin^2A} \over {1-sinA} \)

= \( cos^2A \over {1-sinA} \)

= \( RHS \)

(ii) \( {\sqrt {{1-cosA}\over{1+cosA}}} = {sinA \over {1+cosA}} \)

LHS = \( {\sqrt {{1-cosA}\over{1+cosA}}} \)

= \( {\sqrt {{1-cosA}\over{1+cosA}} \times {{1-cosA}\over{1-cosA}}} \)

= \( {\sqrt {{(1-cosA)^2}\over{1-cos^2A}}} \)

= \( {{(1-cosA)}\over{sinA}} \times {{1+cosA}\over{1+cosA}} \)

= \( {{1-cos^2A}\over {sinA (1+cosA)}} \)

= \( sin^2A \over {sinA (1+cosA)} \)

= \( {sinA \over {1+cosA}} = RHS \)

View Answer Workspace Report Discuss

19. (i) \( {\sqrt{{1+sinA} \over {1-sinA}}} = tanA + secA \)

(ii) \( {\sqrt{{1-cosA} \over {1+cosA}}} = cosecA-cotA \)

Solution :
(i) \( {\sqrt{{1+sinA} \over {1-sinA}}} = tanA + secA \)
LHS= \( {\sqrt{{1+sinA} \over {1-sinA}}} \)

= \( {\sqrt{{1+sinA} \over {1-sinA}} \times {{1+sinA} \over {1+sinA}} } \)

= \( {\sqrt{{(1+sinA)^2} \over {1-sin^2A}} } \)

= \( {\sqrt{{(1+sinA)^2} \over {cos^2A}} } \)

= \( {{{(1+sinA)} \over {cosA}} } \)

= \( {sinA \over cosA} + {1\over cosA} \)

= \( {tanA + secA} = RHS \)

(ii) \( {\sqrt{{1-cosA} \over {1+cosA}}} = cosecA-cotA \)

LHS= \( {\sqrt{{{1-cosA} \over {1+cosA}} \times {{1-cosA} \over {1-cosA}}}} \)

= \( {\sqrt{{(1-cosA)^2} \over {1-cos^2A}}} \)

= \( {\sqrt{{(1-cosA)^2} \over {sin^2A}}} \)

= \( {(1-cosA)} \over {sinA} \)

= \( {1 \over sinA}-{cosA \over sinA} \)

= \( cosecA-cotA = RHS \)

View Answer Workspace Report Discuss

20. (i) \( {\sqrt{{secA-1}\over{secA+1}}} + {\sqrt{{secA+1}\over{secA-1}}} = 2cosecA \)

(ii) \( {cosAcotA \over {1-sinA}} = 1+ cosecA \)

Solution :
(i) \( {\sqrt{{secA-1}\over{secA+1}}} + {\sqrt{{secA+1}\over{secA-1}}} = 2cosecA \)



(ii) \( {cosAcotA \over {1-sinA}} = 1+ cosecA \)

View Answer Workspace Report Discuss

21. (i) \( {(1 + tanA) \over sinA} + {(1 + cotA) \over cosA} \) = \( {2(secA + cosecA)} \)
(ii) \( {sec^4A - tan^4A} = {1 + 2 tan^2A} \)

Solution :
(i) \( {(1 + tanA) \over sinA} + {(1 + cotA) \over cosA} \) = \( {2(secA + cosecA)} \)

(ii) \( {sec^4A - tan^4A} = {1 + 2 tan^2A} \)

View Answer Workspace Report Discuss

22. (i) \( {cosec^6A - cot^6A} = {3cot^2A cosec^2A +1} \)
(ii) \( {sec^6A - tan^6A} = {1 + 3tan^2A + 3 tan^4A} \)

Solution :
(i) \( {cosec^6A - cot^6A} = {3cot^2A cosec^2A +1} \)

(ii) \( {sec^6A - tan^6A} = {1 + 3tan^2A + 3 tan^4A} \)
<

View Answer Workspace Report Discuss

23. (i) \( {cotθ + cosecθ - 1} \over {cotθ - cosecθ + 1} \) = \( {1 + cosθ} \over sinθ \)
(ii) \( {sinθ} \over {cotθ + cosecθ} \) = \( 2 + {sinθ \over {cotθ - cosecθ}} \)

Solution :
(i) \( {cotθ + cosecθ - 1} \over {cotθ - cosecθ + 1} \) = \( {1 + cosθ} \over sinθ \)


(ii) \( {sinθ} \over {cotθ + cosecθ} \) = \( 2 + {sinθ \over {cotθ - cosecθ}} \)

View Answer Workspace Report Discuss

24. (i) \( {(sinθ + cosθ)} {(secθ + cosecθ)} = {2 + secθ cosecθ} \)
(ii) \( {(cosecA - sinA)} {(secA - cosA)} sec^2A = tanA \)

Solution :
(i) \( {(sinθ + cosθ)} {(secθ + cosecθ)} = {2 + secθ cosecθ} \)

(ii) \( {(cosecA - sinA)} {(secA - cosA)} sec^2A = tanA \)

View Answer Workspace Report Discuss

25. (i) \( {{sin^3 + cos^3A} \over {sinA + cosA}} + {{sin^3A - cos^3A} \over {sinA - cosA}} \) = 2
(ii) \( {tan^2A \over {1 + tan^2A}} + {cot^2A \over {1 + cot^2A}} \) = 1

Solution :
(i) \( {{sin^3 + cos^3A} \over {sinA + cosA}} + {{sin^3A - cos^3A} \over {sinA - cosA}} \) = 2

(ii) \( {tan^2A \over {1 + tan^2A}} + {cot^2A \over {1 + cot^2A}} \) = 1

View Answer Workspace Report Discuss

26. (i) \( {1 \over {secA + tanA}} - {1 \over cosA} = {1 \over cosA} - {1 \over {secA - tanA}} \)
(ii) \( {(sinA + secA)^2} + {(cosA + cosecA)^2} = {(1 + secA cosecA)^2} \)
(iii) \( {tanA + sinA} \over {tanA - sinA} \) = \( {secA + 1} \over {secA - 1} \)

Solution :
(i) \( {1 \over {secA + tanA}} - {1 \over cosA} = {1 \over cosA} - {1 \over {secA - tanA}} \)

(ii) \( {(sinA + secA)^2} + {(cosA + cosecA)^2} = {(1 + secA cosecA)^2} \)

(iii) \( {tanA + sinA} \over {tanA - sinA} \) = \( {secA + 1} \over {secA - 1} \)

View Answer Workspace Report Discuss

27. if sinθ + cosθ = √2 sin(90°-θ), show that cotθ = √2 + 1

Solution :
sinθ + cosθ = √2 sin(90°-θ)
sinθ + cosθ = √2 cosθ
sinθ = √2 cosθ - cosθ
sinθ = cosθ(√2 - 1)
sinθ/cosθ = (√2 - 1)
tanθ = (√2 - 1)
cotθ = 1/(√2 - 1) x (√2 + 1)/(√2 + 1)
cotθ = (√2 + 1)

View Answer Workspace Report Discuss

28. if 7 sin^2θ + 3 cos^2θ = 4, 0° ≤ θ ≤ 90°, then find the value of θ

Solution :
7 sin^2θ + 3cos^2θ = 4
⇒ 7 sin^2θ + 3cos^2θ = 4(sin^2θ + cos^2θ)
⇒ 7 sin^2θ + 3 cos^2θ = 4 sin^2θ + 4 cos^2θ
⇒ 7 sin^2θ − 4sin^2θ = 4 cos^2θ − 3 cos^2θ
⇒ 3 sin^2θ = cos^2θ
⇒ tan^2θ = 1/3
⇒ tanθ = ±1/√3

View Answer Workspace Report Discuss

29. if secθ + tanθ = m and secθ - tanθ = n, prove that mn = 1

Solution :
Given,
secθ + tanθ = m
secθ − tanθ = n
Now,
mn = (secθ + tanθ)(secθ − tanθ)
= sec^2θ−tan^2θ = 1
Thus, mn = 1

View Answer Workspace Report Discuss

30. if x = a secθ + b tanθ and y = a tanθ + b secθ, prove that x^2 - y^2 = a^2 - b^2.

Solution :
x = a secθ + b tanθ
y = a tanθ + b secθ
x^2 − y^2 = a^2 sec^2θ + b^2 tan^2θ + 2ab secθ tanθ − a^2 tan^2θ − b^2 sec^2θ − 2ab secθ tanθ
= a^2 (sec^2θ − tan^2θ) − b^2 (sec^2θ − tan^2θ)
= a^2−b^2 ( As sec^2θ − tan^2θ = 1)
∴ x^2 − y^2 = a^2 − b^2

View Answer Workspace Report Discuss

31. if x = h + a cosθ and y = k + a sinθ, prove that (x - h)^2 + (y - k)^2 = a^2

Solution :
Given,
x = h + a cosθ
y = k + a sinθ
Now,
x − h = a cosθ
y − k = a sinθ
On squaring and adding we get,
(x − h)^2 + (y − k)^2 = a^2 cos^2θ + a^2 sin^2θ
= a^2 (sin^2θ + cos^2θ)
= a^2(1)
Since [sin^2θ + cos^2θ = 1]
Hence proved.

View Answer Workspace Report Discuss

Other Category List

Cookies Consent

We use cookies to enhance your browsing experience and analyze our traffic. By clicking "Accept All", you consent to our use of cookies. Cookies Policy