Exercise : Chapter 18 Trigonometric Identities Exercise MCQ Questions and Answers
1. If A is an acute angle and sin A = \(3 \over 5\) find all other trigonometric ratios of angle A (using trigonometric identities).
Solution :
sin A = \(3 \over 5\)
In ∆ABC, ∠B = 90°
AC = 5 and BC = 3
∴ AB = \( \sqrt{AC^2 - BC^2} \) = \( \sqrt{5^2 - 3^2} \)
= \(\sqrt{25 - 9}\) = \(\sqrt{16}\) = 4
Now, cos θ = \(AB \over AC\) = \(4 \over 5\)
tanθ = \(BC \over AB\) = \(3 \over 4\)
cotθ = \(1 \over tan θ\) = \(4 \over 3\)
sec θ = \(1 \over cos θ\) = \(5 \over 4\)
cosec θ = \(1 \over sin θ\) = \(5 \over 3\)
2. If A is an acute angle and sec A = \(17 \over 8\), find all other trigonometric ratios of angle A (using trigonometric identities).
Solution :
sec A = \(17 \over 8\) (A is an acute angle)
In right ∆ABC
sec A = \(AC \over AB\) = \(17 \over 8\)
AC = 17, AB = 8
BC = \( \sqrt{AC^2 - AB^2} \) = \( \sqrt{17^2 - 8^2} \)
= \(\sqrt{289 - 64}\) = \(\sqrt{225}\) = 15
Now, sin A = \(BC \over AC\) = \(15 \over 17\)
cos A = \(1 \over sec A \) = \(8 \over 17\)
tan A = \(BC \over AB\) = \( 15 \over 8 \)
cot A = \(1 \over tan A \) = \(8 \over 15\)
cosec A = \(1 \over sin A \) = \(17 \over 15\)
3. If 12 cosec θ = 13, find the value of (2 sin θ – 3 cos θ)/ (4 sin θ – 9 cos θ)
Solution :
Given,
12 cosec θ = 13
⇒ cosec θ = 13/12
In right ∆ ABC,
∠A = θ
So, cosec θ = AC/BC = 13/12
AC = 13 and BC = 12
By Pythagoras theorem,
AB = √(AC2 – BC2)
= √[(13)2 – (12)2]
= √(169 – 144)
= √25
= 5
Now,
sin θ = BC/AC = 12/13
cos θ = AB/AC = 5/13
Hence,
\( {2sin θ - 3cos θ} \over {4sin θ - 9cos θ} \) = \( {2 x { 12 \over 13 } - 3 x { 5 \over 13 } } \over {4 x { 12 \over 13 } - 9 x { 5 \over 13 } } \)
= \( { 24 \over 13 } - { 15 \over 13 } \over { 48 \over 13 } - { 45 \over 13 } \) = \( { 9 \over 13 } \over { 3 \over 13 } \)
= \( { 9 \over 13 } x { 13 \over 3 } \) = 3
4.
Without using trigonometric tables, evaluate the following (4 to 7) :
(i) \(cos^2 26° + cos 64° sin 26° + { tan 36° \over cot 54° } \)
(ii) \( { sec 17° \over cosec 73° } + {tan68° \over cot 22° } + cos^2 44° + cos^2 46° \)
Solution :
Given that
(i) \(cos^2 26° + cos 64° sin 26° + { tan 36° \over cot 54° } \)
= \(cos^2 26° + cos (90° - 26°) sin 26° + { tan 36° \over cot (90° - 36°) } \)
= \(cos^2 26° + sin^2 26° + { tan 36° \over tan 36° } \)
= 1 + 1 = 2
[∵ cos(90° - θ) = sin θ, cot (90° - θ) = tan θ and \( {sin^2} θ + {cos^2} θ = 1 \) ]
(ii) \( { sec 17° \over cosec 73° } + {tan68° \over cot 22° } + cos^2 44° + cos^2 46° \)
= \( { sec (90° - 73°) \over cosec 73° } + {tan (90° - 22°) \over cot 22° } + cos^2 (90° - 46°) + cos^2 46° \)
= \( { cosec 73° \over cosec 73° } + { cot 22° \over cot 22° } + sin^2 46° + cos^2 46° \)
= 1 + 1 + 1 = 3
5.
Without using trigonometric tables, evaluate the following (4 to 7)
(i) \( {sin 65° \over cos 25°} + { cos 32° \over sin 58° } – sin 28° x sec 62° + cosec^2 30° \)
(ii) \({sec29° \over cosec61°} + 2 cot 8° cot 17° cot 45° cot 73° cot 82° – 3(sin^2 38° + sin^2 52°). \)
Solution :
given that
(i) \( {sin 65° \over cos 25°} + { cos 32° \over sin 58° } – sin 28° x sec 62° + cosec² 30° (2015) \)
= \( {sin 65° \over cos (90° - 65°)} + { cos 32° \over sin (90°-32°) } – sin 28° x sec (90° - 28°) + (2)^2 \)
= \( {sin 65° \over sin 65°} + { cos 32° \over cos 32° } – sin 28° x cosec 28° + (2)^2 \)
= \( 1 + 1 – 1 + 4 \)
= 6 - 1 = 5
(ii) \({sec29° \over cosec61°} + 2 cot 8° cot 17° cot 45° cot 73° cot 82° – 3(sin^2 38° + sin^2 52°). \)
= \({sec29° \over cosec(90° - 29°)} + 2 cot 8° cot 17° cot 45° cot (90° - 17°) cot (90°-8°) – 3(sin^2 38° + sin^2 (90° - 38°) \)
= \({sec29° \over cosec(90° - 29°)} + 2 cot 8° cot 17° cot 45° cot (90° - 17°) cot (90°-8°) – 3(sin^2 38° + sin^2 (90° - 38°) \)
= \({sec29° \over cosec(90° - 29°)} + 2 cot 8° cot 17° cot 45° cot (90° - 17°) cot (90°-8°) – 3(sin^2 38° + sin^2 (90° - 38°) \)
= \({sec29° \over sec29°} + 2 cot 8° cot 17° cot 45° tan 17° tan 8° – 3(sin^2 38° + cos^2 38°) \)
= \( 1 + 2 x cot 8° x cot 17° x cot 45° x {1 \over cot 8°} x {1 \over cot 17°} – {3 x 1} \)
= \( 1 + 2 x 1 x 1 x 1 – 3 \)
= \( 3 – 3 \) = \( 0 \)
6.
Without using trigonometric tables, evaluate the following (4 to 7)
(i) \( {sin35° cos55° + cos35° sin55°} \over { cosec^2 10° − tan^2 80°} \)
(ii) \(sin^2 34° + sin^2 56° + 2tan18° tan72° − cot^2 30° \)
Solution :
Given that
(i) \( {sin35° cos55° + cos35° sin55°} \over { cosec^2 10° − tan^2 80°} \)
= \( {sin35° cos(90° - 35)° + cos35° sin(90° - 35°)} \over { cosec^2 10° − tan^2 (90° - 10°)} \)
= \( {sin35° sin35° + cos35° cos35°} \over { cosec^2 10° − cot^2 10} \)
= \( {sin^2 35° + cos^2 35°} \over { cosec^2 10° − cot^2 10} \)
= \( 1 \over 1 \) = 1
[∵ \( {sin^2} θ + {cos^2} θ = 1 \) and \( {cosec^2} θ - {cot^2} θ = 1 \) ]
(ii) \(sin^2 34° + sin^2 56° + 2tan18° tan72° − cot^2 30° \)
= \(sin^2 34° + sin^2 (90° - 34°) + 2tan18° tan(90° - 18°) − cot^2 30° \)
= \(sin^2 34° + cos^2 34° + 2 tan18° cot18° − cot^2 30° \)
= \(1 + 2 x 1 − (\sqrt 3)^2 \)
= \(1 + 2 − 3 \) = \( 3 − 3 \) = \( 0 \)
7.
Without using trigonometric tables, evaluate the following (4 to 7)
(i) \( ({ tan25° \over cosec65° })^2 + ({cot25° \over sec65° })^2 + 2 tan18° tan45° tan72° \)
(ii) \( {(cos^2 25° + cos^2 65°)} + cosecθ \ sec(90°−θ) − cotθ \ tan(90°−θ) \)
Solution :
(i) \( ({ tan25° \over cosec65° })^2 + ({cot25° \over sec65° })^2 + 2 tan18° tan45° tan72° \)
= \( ({ tan25° \over cosec(90° -25°) })^2 + ({cot25° \over sec(90°-25°) })^2 + 2 tan18° tan45° tan(90° - 18°) \)
= \( ({ tan25° \over sec25° })^2 + ({cot25° \over cosec25° })^2 + 2 tan18° tan45° cot18° \)
= \( ({ {sin25° x cos25°} \over {cos25° x 1} })^2 + ({ {cos25° x sin25°} \over {sin25° x 1} })^2 + 2 x 1 x 1 \)
= \( sin^2 25° + cos^2 25° + 2 \) = \( 1 + 2 \) = \( 3 \)
[∵ \( {sin^2} θ + {cos^2} θ = 1 \) and \( {tan} θ \ {cot} θ = 1 \) ]
(ii) \( {(cos^2 25° + cos^2 65°)} + cosecθ \ sec(90°−θ) − cotθ \ tan(90°−θ) \)
= \( {[ cos^2 25° + cos^2 (90° - 25°) ]} + cosecθ \ cosecθ − cotθ \ cotθ \)
= \( {( cos^2 25° + sin^2 25° )} + cosec^2 θ − cot^2 θ \)
= \( 1 + 1 \) = \( 2 \)
[∵ \( {sin^2} θ + {cos^2} θ = 1 \) and \( cosec^2 θ - cot^2 θ = 1 \) ]
8.
Prove that following (8 to 26) identities, where the angles involved are acute angles for which the trigonometric ratios as defined:
(i) (sec A + tan A) (1 – sin A) = cos A
(ii) \( {(1 + tan^2 A) (1 – sin A) (1 + sin A)} \) = 1
Solution :
(i) (sec A + tan A) (1 – sin A) = cos A
L.H.S = \( ({1 \over cos A} + { sin A \over cos A}) {( 1 - sin A )} \)
= \( {(1 + sin A) \times (1 - sin A)} \over cos A \)
= \( {cos^2 A} \over cos A \) = \( cos A \) = \( R.H.S \)
[∵ \( 1 - {sin^2} θ = cos^2 θ \) ]
(ii) \( {(1 + tan^2 A) (1 – sin A) (1 + sin A)} \) = 1
L.H.S. = \( {(1 + tan^2 A) (1 – sin A) (1 + sin A)} \)
= \( (1 + {sin^2 A \over cos^2 A}) (1 – sin^2 A) \)
= \( {{cos^2 A + sin^2 A} \over cos^2 A} \times cos^2 A \)
= \( {1 \over cos^2 A} \times cos^2 A \) = \( 1 \) = \( R.H.S \)
[∵ \( 1 - {sin^2} A = cos^2 A \) and \( sin^2 A + cos^2 A = 1 \) ]
9.
Prove that following (8 to 26) identities, where the angles involved are acute angles for which the trigonometric ratios as defined:
(i) tan A + cot A = sec A cosec A
(ii) (1 – cos A)(1 + sec A) = tan A sin A.
Solution :
(i) tan A + cot A = sec A cosec A
L.H.S = tan A + cot A
= \( {sinA \over cosA} + {cosA \over sinA} \)
= \( {sin^2 A + cos^2 A} \over {sinA \ cosA} \)
= \( 1 \over {sinA \ cosA} \) = \( cosecA \ secA \) = \( secA \ cosecA \) = \( R.H.S. \)
[∵ \( sin^2 A + cos^2 A = 1 \) ]
(ii) (1 – cos A)(1 + sec A) = tan A sin A
L.H.S. = \( (1 – cos A)(1 + sec A) \)
= \( (1 – cos A)(1 + {1 \over cos A}) \)
= \( (1 – cos A){(cosA + 1) \over cos A} \)
= \( {(1 – cos A) (1 + cosA)} \over cos A \)
= \( {1 – cos^2 A} \over cos A \)
= \( sin^2 A \over cos A \) = \( sin A \times {sinA \over cos A} \)
= \( sinA tanA \) = \( tanA sinA \) = \( R.H.S \)
[∵ \( 1 – cos^2 A = sin^2 A \) and \( tanA = {sinA \over cosA} \) ]
10.
(i) \( cot^2 A - cos^2 A = cot^2 A cos^2 A \)
(ii) \( 1 + { tan^2 A \over {1+secA} } = sec A \)
(iii) \( {{1+secA} \over secA} = {sin^2 A \over {1-cosA}} \)
(iv) \( {sinA \over (1-cosA)} = cosec A + cotA \)
Solution :
(i) \( cot^2 A - cos^2 A = cot^2 A cos^2 A \)
LHS = \( cot^2 A - cos^2 A \)
= \( {cos^2 A \over sin^2A} - cos^2 A \)
= \( {cos^2 A {(1-sin^2A)}}\over sin^2A \)
= \( {cos^2 A {cos^2 A\over sin^2A}} \)
= \( cos^2 A cot^2A = RHS \)
(ii) \( 1 + { tan^2 A \over {1+secA} } = sec A \)
LHS = \( 1 + { tan^2 A \over {1+secA} } \)
= \( 1 + { {sec^2 A -1} \over {1+secA} } \)
= \( 1 + { {{(secA-1)}{(secA+1)}} \over {1+secA} } \)
= \( 1 + { {{(secA-1)}} } \)
= \(secA = RHS\)
(iii) \( {{1+secA} \over secA} = {sin^2 A \over {1-cosA}} \)
LHS = \( {{1+secA} \over secA} \)
= \( {{1+{1 \over cosA}} \over {1 \over cosA}} \)
= \( {{1+{1 \over cosA}} \over {1 \over cosA}} \)
= \( {({1+{1 \over cosA})} \times {cosA}} \)
= \( {{cosA+1} \over cosA} \times {cosA} \)
= \( {cosA +1} \)
= \( {(1+cosA)} \times {{(1-cosA)}\over{(1-cosA)}} \)
= \( {{(1-cos^2A)}\over{(1-cosA)}} \)
= \( {{sin^2A}\over{1-cosA}} \) = RHS
(iv) \( {sinA \over (1-cosA)} = cosec A + cotA \)
LHS = \( sinA \over (1-cosA) \)
= \( {sinA \over (1-cosA)} \times {(1+cosA)\over(1+cosA)} \)
= \( {{sinA + sinA cosA} \over (1-cos^2A)} \)
= \( {{sinA + sinA cosA} \over sin^2A} \)
= \( {sinA \over sin^2A} + {{sinAcosA} \over \sin^2A } \)
= \( {1 \over sinA} + {{cosA} \over sinA } \)
= \( {cosecA} + {cotA } = RHS \)
11.
(i) \( {sinA \over {1+cosA}} = {{1-cosA} \over sinA} \)
(ii) \( {{1-tan^2 A} \over {cot^2 A -1}} = tan^2A \)
(iii) \( {sinA \over {1+cosA}} = cosecA-cotA \)
Solution :
(i) \( {sinA \over {1+cosA}} = {{1-cosA} \over sinA} \)
LHS = \( {sinA \over {1+cosA}} \)
= \( {sinA \over {1+cosA}} \times {(1-cosA) \over (1-cosA)} \)
= \( {sinA (1-cosA)} \over {(1-cos^2A)} \)
= \( {sinA (1-cosA)} \over {sin^2A} \)
= \( {1-cosA} \over {sinA} \)
(ii) \( {{1-tan^2 A} \over {cot^2 A -1}} = tan^2A \)
LHS = \( {{1-tan^2 A} \over {cot^2 A -1}} \)
= \( {{1-{({sin^2A \over cos^2A})}} \over {{({cos^2A \over sin^2A})} -1}} \)
= \( {{cos^2A - sin^2A} \over cos^2A} \over {{cos^2A - sin^2A} \over sin^2A} \)
= \( {{cos^2A - sin^2A} \over cos^2A} \times { sin^2A \over {cos^2A - sin^2A}} \)
= \( {sin^2A \over cos^2A} = tan^2A = RHS\)
(iii) \( {sinA \over {1+cosA}} = cosecA-cotA \)
LHS = \( {sinA \over {1+cosA}} \)
= \( {sinA \over {1+cosA}} \times {{1-cosA}\over{1-cosA}} \)
= \( {{sinA{(1-cosA)}} \over {1-cos^2A}} \)
= \( {{sinA{(1-cosA)}} \over sin^2A} \)
= \( {{{(1-cosA)}} \over sinA} \)
= \( {1\over sinA} - {cosA \over sinA} \)
= \( {cosecA - cotA} = RHS \)
12.
(i) \( {{secA-1} \over {secA+1}} = {{1-cosA} \over {1+cosA}} \)
(ii) \( {tan^2θ \over {(secθ-1)^2}} = {{1+cosθ}\over{1-cosθ}} \)
(iii) \( {(1+tanA)^2} + {(1-tanA)^2} = 2 sec^2 A \)
(iv) \( sec^2A +cosec^2A = sec^2A cosec^2A \)
Solution :
(i) \( {{secA-1} \over {secA+1}} = {{1-cosA} \over {1+cosA}} \)
LHS = \( {{secA-1} \over {secA+1}} \)
= \( {{{1 \over cosA}-1} \over {{1 \over cosA}+1}} \)
= \( {{1-cosA}\over cosA} \over {{1+cosA}\over cosA} \)
= \( {{1-cosA} \over cosA} \times {{1+cosA}\over cosA} \)
= \( {{1-cosA} \over {1+cosA}} = RHS \)
(ii) \( {tan^2θ \over {(secθ-1)^2}} = {{1+cosθ}\over{1-cosθ}} \)
LHS = \( {tan^2θ \over {(secθ-1)^2}} \)
= \( {sec^2θ -1} \over {(secθ-1)^2} \)
= \( {(secθ+1) (secθ-1)} \over {(secθ-1)^2} \)
= \( {secθ+1}\over {secθ-1} \)
= \( {{1 \over cosθ} +1} \over {{1 \over cosθ} -1} \)
= \( {{1+cosθ}\over cosθ} \over {{1-cosθ} \over cosθ} \)
= \( {{1+cosθ}\over cosθ} \times {cosθ \over {1-cosθ}}\) = \( {{1+cosθ}\over {1-cosθ}} =RHS \)
(iii) \( {(1+tanA)^2} + {(1-tanA)^2} = 2 sec^2 A \)
LHS = \( {(1+tanA)^2} + {(1-tanA)^2} \)
= \( 1+tan²A+2tanA+1+tan²A-2tanA \)
= \( 2+2tan²A \)
from formula, \( sen²A-tan²A=1 \) that is \( sec²A=1+tan²A \)
= \( 2(1+tan²A) \)
= \( 2sec²A = RHS \)
(iv) \( sec^2A +cosec^2A = sec^2A cosec^2A \)
LHS = \( sec^2A +cosec^2A \)
= \( {1 \over cos^2A} + {1 \over sin^2A} \)
= \( {sin^2A + cos^2A} \over {cos^2A sin^2A} \)
= \( 1 \over {cos^2A sin^2A} \)
= \( {1 \over {cos^2A}}\times{1 \over {sin^2A}} \)
= \( sec^2A cosec^2A = RHS \)
13.
(i) \( {{1+sinA} \over cosA} + {cosA \over {1+sinA}} = 2 secA \)
(ii) \( {tanA \over {secA-1}} + {tanA \over {secA+1}} = 2 cosecA \)
Solution :
(i) \( {{1+sinA} \over cosA} + {cosA \over {1+sinA}} = 2 secA \)
LHS = \( {{1+sinA} \over cosA} + {cosA \over {1+sinA}} \)
= \( {{(1+sinA)^2} + {cos^2A}} \over cosA {(1+sinA)} \)
= \( {{1 + sin^2A + 2sinA + cos^2A} \over cosA {(1+sinA)} } \)
= \( {1+1+2sinA} \over cosA {(1+sinA)} \)
= \( {2+2sinA} \over cosA {(1+sinA)} \)
= \( {2(1+sinA)} \over cosA {(1+sinA)} \)
= \( 2 \over cosA \) = \( 2 secA = RHS \)
(ii) \( {tanA \over {secA-1}} + {tanA \over {secA+1}} = 2 cosecA \)
LHS = \( {tanA \over {secA-1}} + {tanA \over {secA+1}} \)
= \( {{sinA \over cosA} \over {{1 \over cosA} -1}} + {{sinA \over cosA} \over {{1 \over cosA} +1}} \)
= \( {{sinA \over cosA} \over {{1-cosA}\over cosA}} + {{sinA \over cosA} \over {{1+cosA}\over cosA}} \)
= \( {({sinA \over cosA} \times {cosA \over {1-cosA}})} + {({sinA \over cosA} \times {cosA \over {1+cosA}})} \)
= \( {sinA \over {1-cosA}} + {sinA \over {1+cosA}} \)
= \( {{sinA (1+cosA)} + {sinA (1-cosA)} } \over {(1-cosA)(1+cosA)} \)
= \( {{sinA + sinAcosA + sinA - sinAcosA}\over {1-cos^2A}} \)
= \( {2sinA} \over sin^2A \) = \( 2 \over sinA \) = \( 2 cosecA = RHS \)
14.
(i) \( {cosecA \over {cosecA-1}} + {cosecA \over {cosecA+1}} = 2sec^2A \)
(ii) \( {cotA-tanA} = {{2cos^2A-1}\over{sinA cosA}} \)
(iii) \( {{cotA-1} \over {2-sec^2A}} = {cotA \over {1+tanA}} \)
Solution :
(i) \( {cosecA \over {cosecA-1}} + {cosecA \over {cosecA+1}} = 2sec^2A \)
LHS = \( {cosecA \over {cosecA-1}} + {cosecA \over {cosecA+1}} \)
= \( {{cosecA (cosecA+1)} + {cosecA (cosecA-1)}} \over {(cosecA-1)(cosecA+1)} \)
= \( {{cosec^2A + cosecA + cosec^2A - cosecA} \over {cosec^2A-1}} \)
= \( {2cosec^2A} \over cot^2A \)
= \( {2 \over sin^2A} \over {cos^2A \over sin^2A} \)
= \( {2 \over sin^2A} \times {sin^2A \over cos^2A} \)
= \( {2 \over cos^2A } = {2 sec^2A} = RHS \)
(ii) \( {cotA-tanA} = {{2cos^2A-1}\over{sinA cosA}} \)
LHS = \( {cosA \over sinA} - {sinA \over cosA} \)
= \( {cos^2A - sin^2A} \over {sinA cosA} \)
= \( {cos^2A - (1-cos^2A)} \over {sinA cosA} \)
= \( {cos^2A -1 + cos^2A} \over {sinA cosA} \)
= \( {{2cos^2A-1} \over {sinA cosA}} = RHS \)
(iii) \( {{cotA-1} \over {2-sec^2A}} = {cotA \over {1+tanA}} \)
LHS = \( {cotA - 1} \over {2 - sec^2A} \)
= \({{cosA \over sinA} - 1} \over {1 + 1 - sec^2A} \)
= \({{cosA - sinA} \over sinA} \over {1 - tan^2A} \)
= \({{cosA - sinA} \over sinA} \over {1 - {sin^2A \over cos^2A}} \)
= \({{cosA - sinA} \over sinA} \over {{cos^2A - sin^2A} \over cos^2A} \)
= \({{cosA - sinA} \over sinA } \times {cos^2A \over {(cosA + sinA)} {(cosA - sinA)}} \)
= \( {cos^2A} \over {sinA (cosA + sinA)} \)
RHS = \( cotA \over {1 - tanA} \)
= \( {(cosA \over sinA)} \over {(1 - sinA) \over cosA} \)
= \( {cosA \over sinA} \over {{cosA - sinA} \over cosA} \)
= \( {cosA \over sinA} \times {cosA \over {cosA - sinA}} \)
= \( {cos^2A} \over {sinA (cosA + sinA)} \)
\( LHS = RHS \)
Hence proved.
15.
(i) \( tan^2θ - sin^2θ = tan^2θsin^2θ \)
(ii) \( {cosθ \over {1-tanθ}} - {sin^2θ \over {cosθ-sinθ}} = cosθ+sinθ \)
Solution :
(i) \( tan^2θ - sin^2θ = tan^2θsin^2θ \)
LHS = \( tan^2θ - sin^2θ \)
= \( {sin^2θ \over cos^2θ} - sin^2θ \)
= \( {sin^2θ - sin^2θcos^2θ} \over cos^2θ \)
=\( {sin^2θ{(1-cos^2θ)}} \over cos^2θ \)
= \( {{sin^2θ sin^2θ} \over cos^2θ} \)
= \( {sin^2θ \over cos^2θ} sin^2θ \)
= \( tan^2θsin^2θ = RHS \)
(ii) \( {cosθ \over {1-tanθ}} - {sin^2θ \over {cosθ-sinθ}} = cosθ+sinθ \)
LHS = \( {cosθ \over {1-tanθ}} - {sin^2θ \over {cosθ-sinθ}} \)
= \( {cosθ \over {1-{sinθ \over cosθ}}} - {sin^2θ \over {cosθ-sinθ}} \)
= \( {cosθ \over {{cosθ-sinθ} \over cosθ}} - {sin^2θ \over {cosθ-sinθ}} \)
= \( {cosθ \times {cosθ \over {cosθ-sinθ}}} - {sin^2θ \over {cosθ-sinθ}} \)
= \( {cos^2θ \over {cosθ-sinθ}} - {sin^2θ \over {cosθ-sinθ}} \)
= \( {cos^2θ -sin^2θ } \over { cosθ-sinθ} \)
= \( {(cosθ -sinθ)(cosθ +sinθ)} \over {(cosθ-sinθ)} \)
= \( {(cosθ +sinθ)} = RHS \)
16.
(i) \( cosec^4θ-cosec^2θ = cot^4θ+cot^2θ \)
(ii) \( 2sec^2θ-sec^4θ-2cosec^2θ+cosec^4θ = cot^4θ - tan^4θ \)
Solution :
(i) \( cosec^4θ-cosec^2θ = cot^4θ+cot^2θ \)
LHS = \( cosec^4θ-cosec^2θ \)
= \( {cosec^2θ(cosec^2θ-1)} \)
= \( cosec^2θ cot^2θ \)
= \( {(1+cot^2θ) cot^2θ} \)
= \( {cot^2θ+} \)
= \( {cot^4θ + cot^2θ} = RHS \)
(ii) \( 2sec^2θ-sec^4θ-2cosec^2θ+cosec^4θ = cot^4θ - tan^4θ \)
LHS = \( 2sec^2θ−sec^4θ−2cosec^2θ+cosec^4θ \)
= \( {(cosec^4θ−2cosec^2θ)}−{(sec^4θ−2sec^2θ)} \)
= \( {(cosec^4θ−2cosec^2θ+1)}−{(sec^4θ−2sec^2θ+1)} \)
= \( {(cosec^2θ−1)^2}−{(sec^2θ−1)^2} \)
= \( {cot^4θ−tan^4θ} \)
= \( RHS \)
17.
(i) \( {{1+cosθ-sin^2θ} \over {sinθ{(1+cosθ)}}} = cotθ \)
(ii) \( {{tan^3θ-1}\over{tanθ-1}} = sec^2θ+tanθ \)
Solution :
(i) \( {{1+cosθ-sin^2θ} \over {sinθ{(1+cosθ)}}} = cotθ \)
LHS = \( {{1+cosθ-sin^2θ} \over {sinθ{(1+cosθ)}}} \)
= \( {{1+cosθ-{1+cos^2θ}} \over {sinθ{(1+cosθ)}}} \)
= \( {{1+cosθ-1+cos^2θ}} \over {sinθ{(1+cosθ)}} \)
= \( {cosθ(1+cosθ)} \over {sinθ{(1+cosθ)}} \)
= \( {cosθ \over sinθ} = cotθ = RHS \)
(ii) \( {{tan^3θ-1}\over{tanθ-1}} = sec^2θ+tanθ \)
LHS = \( {{tan^3θ-1}\over{tanθ-1}} \)
= \( {{(tanθ-1)}{tan^2θ + tanθ +1}} \over {tanθ-1} \)
= \( {tan^2θ + tanθ +1} \)
= \( {(1+ tan^2θ)} + tanθ \)
= \( sec^2θ + tanθ = RHS \)
18.
(i) \( {{1+cosecA} \over cosecA} = {cos^2A \over {1-sinA}} \)
(ii) \( {\sqrt {{1-cosA}\over{1+cosA}}} = {sinA \over {1+cosA}} \)
Solution :
(i) \( {{1+cosecA} \over cosecA} = {cos^2A \over {1-sinA}} \)
LHS = \( {{1+cosecA} \over cosecA} \)
= \( {1 \over cosecA} + {cosecA \over cosecA} \)
= \( sinA+1 \)
= \( {sinA+1} \times {{(1-sinA )} \over {(1-sinA)}} \)
= \( {1- sin^2A} \over {1-sinA} \)
= \( cos^2A \over {1-sinA} \)
= \( RHS \)
(ii) \( {\sqrt {{1-cosA}\over{1+cosA}}} = {sinA \over {1+cosA}} \)
LHS = \( {\sqrt {{1-cosA}\over{1+cosA}}} \)
= \( {\sqrt {{1-cosA}\over{1+cosA}} \times {{1-cosA}\over{1-cosA}}} \)
= \( {\sqrt {{(1-cosA)^2}\over{1-cos^2A}}} \)
= \( {{(1-cosA)}\over{sinA}} \times {{1+cosA}\over{1+cosA}} \)
= \( {{1-cos^2A}\over {sinA (1+cosA)}} \)
= \( sin^2A \over {sinA (1+cosA)} \)
= \( {sinA \over {1+cosA}} = RHS \)
19.
(i) \( {\sqrt{{1+sinA} \over {1-sinA}}} = tanA + secA \)
(ii) \( {\sqrt{{1-cosA} \over {1+cosA}}} = cosecA-cotA \)
Solution :
(i) \( {\sqrt{{1+sinA} \over {1-sinA}}} = tanA + secA \)
LHS= \( {\sqrt{{1+sinA} \over {1-sinA}}} \)
= \( {\sqrt{{1+sinA} \over {1-sinA}} \times {{1+sinA} \over {1+sinA}} } \)
= \( {\sqrt{{(1+sinA)^2} \over {1-sin^2A}} } \)
= \( {\sqrt{{(1+sinA)^2} \over {cos^2A}} } \)
= \( {{{(1+sinA)} \over {cosA}} } \)
= \( {sinA \over cosA} + {1\over cosA} \)
= \( {tanA + secA} = RHS \)
(ii) \( {\sqrt{{1-cosA} \over {1+cosA}}} = cosecA-cotA \)
LHS= \( {\sqrt{{{1-cosA} \over {1+cosA}} \times {{1-cosA} \over {1-cosA}}}} \)
= \( {\sqrt{{(1-cosA)^2} \over {1-cos^2A}}} \)
= \( {\sqrt{{(1-cosA)^2} \over {sin^2A}}} \)
= \( {(1-cosA)} \over {sinA} \)
= \( {1 \over sinA}-{cosA \over sinA} \)
= \( cosecA-cotA = RHS \)
20.
(i) \( {\sqrt{{secA-1}\over{secA+1}}} + {\sqrt{{secA+1}\over{secA-1}}} = 2cosecA \)
(ii) \( {cosAcotA \over {1-sinA}} = 1+ cosecA \)
Solution :
(i) \( {\sqrt{{secA-1}\over{secA+1}}} + {\sqrt{{secA+1}\over{secA-1}}} = 2cosecA \)
(ii) \( {cosAcotA \over {1-sinA}} = 1+ cosecA \)
21.
(i) \( {(1 + tanA) \over sinA} + {(1 + cotA) \over cosA} \) = \( {2(secA + cosecA)} \)
(ii) \( {sec^4A - tan^4A} = {1 + 2 tan^2A} \)
Solution :
(i) \( {(1 + tanA) \over sinA} + {(1 + cotA) \over cosA} \) = \( {2(secA + cosecA)} \)
(ii) \( {sec^4A - tan^4A} = {1 + 2 tan^2A} \)
22.
(i) \( {cosec^6A - cot^6A} = {3cot^2A cosec^2A +1} \)
(ii) \( {sec^6A - tan^6A} = {1 + 3tan^2A + 3 tan^4A} \)
Solution :
(i) \( {cosec^6A - cot^6A} = {3cot^2A cosec^2A +1} \)
(ii) \( {sec^6A - tan^6A} = {1 + 3tan^2A + 3 tan^4A} \)
<
23.
(i) \( {cotθ + cosecθ - 1} \over {cotθ - cosecθ + 1} \) = \( {1 + cosθ} \over sinθ \)
(ii) \( {sinθ} \over {cotθ + cosecθ} \) = \( 2 + {sinθ \over {cotθ - cosecθ}} \)
Solution :
(i) \( {cotθ + cosecθ - 1} \over {cotθ - cosecθ + 1} \) = \( {1 + cosθ} \over sinθ \)
(ii) \( {sinθ} \over {cotθ + cosecθ} \) = \( 2 + {sinθ \over {cotθ - cosecθ}} \)
24.
(i) \( {(sinθ + cosθ)} {(secθ + cosecθ)} = {2 + secθ cosecθ} \)
(ii) \( {(cosecA - sinA)} {(secA - cosA)} sec^2A = tanA \)
Solution :
(i) \( {(sinθ + cosθ)} {(secθ + cosecθ)} = {2 + secθ cosecθ} \)
(ii) \( {(cosecA - sinA)} {(secA - cosA)} sec^2A = tanA \)
25.
(i) \( {{sin^3 + cos^3A} \over {sinA + cosA}} + {{sin^3A - cos^3A} \over {sinA - cosA}} \) = 2
(ii) \( {tan^2A \over {1 + tan^2A}} + {cot^2A \over {1 + cot^2A}} \) = 1
Solution :
(i) \( {{sin^3 + cos^3A} \over {sinA + cosA}} + {{sin^3A - cos^3A} \over {sinA - cosA}} \) = 2
(ii) \( {tan^2A \over {1 + tan^2A}} + {cot^2A \over {1 + cot^2A}} \) = 1
26.
(i) \( {1 \over {secA + tanA}} - {1 \over cosA} = {1 \over cosA} - {1 \over {secA - tanA}} \)
(ii) \( {(sinA + secA)^2} + {(cosA + cosecA)^2} = {(1 + secA cosecA)^2} \)
(iii) \( {tanA + sinA} \over {tanA - sinA} \) = \( {secA + 1} \over {secA - 1} \)
Solution :
(i) \( {1 \over {secA + tanA}} - {1 \over cosA} = {1 \over cosA} - {1 \over {secA - tanA}} \)
(ii) \( {(sinA + secA)^2} + {(cosA + cosecA)^2} = {(1 + secA cosecA)^2} \)
(iii) \( {tanA + sinA} \over {tanA - sinA} \) = \( {secA + 1} \over {secA - 1} \)
27. if sinθ + cosθ = √2 sin(90°-θ), show that cotθ = √2 + 1
Solution :
sinθ + cosθ = √2 sin(90°-θ)
sinθ + cosθ = √2 cosθ
sinθ = √2 cosθ - cosθ
sinθ = cosθ(√2 - 1)
sinθ/cosθ = (√2 - 1)
tanθ = (√2 - 1)
cotθ = 1/(√2 - 1) x (√2 + 1)/(√2 + 1)
cotθ = (√2 + 1)
28. if 7 sin^2θ + 3 cos^2θ = 4, 0° ≤ θ ≤ 90°, then find the value of θ
Solution :
7 sin^2θ + 3cos^2θ = 4
⇒ 7 sin^2θ + 3cos^2θ = 4(sin^2θ + cos^2θ)
⇒ 7 sin^2θ + 3 cos^2θ = 4 sin^2θ + 4 cos^2θ
⇒ 7 sin^2θ − 4sin^2θ = 4 cos^2θ − 3 cos^2θ
⇒ 3 sin^2θ = cos^2θ
⇒ tan^2θ = 1/3
⇒ tanθ = ±1/√3
29. if secθ + tanθ = m and secθ - tanθ = n, prove that mn = 1
Solution :
Given,
secθ + tanθ = m
secθ − tanθ = n
Now,
mn = (secθ + tanθ)(secθ − tanθ)
= sec^2θ−tan^2θ = 1
Thus, mn = 1
30. if x = a secθ + b tanθ and y = a tanθ + b secθ, prove that x^2 - y^2 = a^2 - b^2.
Solution :
x = a secθ + b tanθ
y = a tanθ + b secθ
x^2 − y^2 = a^2 sec^2θ + b^2 tan^2θ + 2ab secθ tanθ − a^2 tan^2θ − b^2 sec^2θ − 2ab secθ tanθ
= a^2 (sec^2θ − tan^2θ) − b^2 (sec^2θ − tan^2θ)
= a^2−b^2 ( As sec^2θ − tan^2θ = 1)
∴ x^2 − y^2 = a^2 − b^2
31. if x = h + a cosθ and y = k + a sinθ, prove that (x - h)^2 + (y - k)^2 = a^2
Solution :
Given,
x = h + a cosθ
y = k + a sinθ
Now,
x − h = a cosθ
y − k = a sinθ
On squaring and adding we get,
(x − h)^2 + (y − k)^2 = a^2 cos^2θ + a^2 sin^2θ
= a^2 (sin^2θ + cos^2θ)
= a^2(1)
Since [sin^2θ + cos^2θ = 1]
Hence proved.